
Numerical computation of false alarm

probability for multiple trials

Masaharu Hirayama

January 9, 2007

1 Problem

Consider a statistical trial that can result in various events, each of which
occurs at a fixed probability. When a certain event occurs at probability of
p (0 ≤ p ≤ 1) for a single trial, a probability Q that the event occurs at least
once for N trials (N > 0) can be written as

Q = 1 − (1 − p)N . (1)

Note that, however, when X is a value in range 0 ≤ X ≤ 1, term (1 − X)
becomes computationally challenging in two cases: either X is very small, or
very close to 1. Let ε be the difference between 1.0 and the smallest repre-
sentable value greater than 1.0. In the former case, a regular computation
of (1 − X) results in 1 for X < ε, In the latter case, (1 − X) gives zero for
X > 1− ε. In either case, a result from a regular computation may not be a
desired one.
Terms in a form of (1 − X) appear in Eq. 1 in two places: one with X = p

and the other with X = (1− p)N . Special care must be taken in those places
to obtain a desired result. Illustrated below is a procedure to compute Q for
an arbitrary combination of p and N , minimizing loss of precision during the
computation.

2 Computational difficulties

Computation of Q can be difficult for certain values of p and N , as mentioned
in Section 1. This section summarizes such cases and discusses limitations

1



of computation of Q. There are four cases that may be problematic in com-
puting Q, and those cases are discussed in detail below.

Case 1: p < ε

In this case, Q can be any number in range 0 ≤ Q ≤ 1. Even though
(1− p) is very close to 1, (1− p)N can be very small for a large N , for
which Q becomes close to 1. For a small N , on the other hand, (1−p)N

may stay close to 1, in which case Q becomes very small. Hence, Q

can take any number between 0 and 1 if N is properly chosen between
those extreme cases. This case needs a special care in computing Q.

Case 2: p > 1 − ε

In this case, Q is even closer to 1. From Eq. 1, it is trivial that 1−Q ≤

1 − p, hence Q ≥ p. As a result, when p > 1 − ε, it is guaranteed that
Q > 1 − ε. In that case, the only way to express Q on a computer
system is to make it equal to 1. For that reason, there is no problem
in computing Q in this case, even though a number of significant digits
may be lost in computation of (1−p) by computational rounding. Note
that, however, setting Q = 1 for p > 1− ε might cause a problem when
p is very close to the boundary of the inequality, especially for N = 1.

Case 3: (1 − p)N < ε

In this case, Q is very close to 1. This case makes Q > 1− ε, hence the
discussion for the case for p > 1 − ε applies to this case.

Case 4: (1 − p)N > 1 − ε

In this case, Q is very small, as Q < ε. A regular computation of
1− (1− p)N would result in zero, because (1− p)N would be expressed
as exactly 1 in a computer system. This case needs a special care in
computing Q.

3 Computation strategy

This section describes in detail how to numerically compute Eq. 1, over-
coming the computation difficulties mentioned in Section 2. With a simple
manipulation of Eq. 1, it is trivial that Q can be written as

Q = 1 − e−x (2)

2



where
x ≡ −N ln(1 − p). (3)

The strategy here is to compute x from p first, then compute Q from the
resultant x. Each of the computationally difficult cases in Section 2 now
belongs to one of the two steps: cases 1 and 2 should be taken care of in the
first step (i.e., computation of x from p) and cases 3 and 4 the second (i.e.,
computation of Q from x).

The strategy does not work efficiently for a few cases. Below those special
cases are described first, then the detailed descriptions of the computing
strategy introduced above follow.

3.1 Special cases

For N = 1, Q = p. For N = 0, Q = 0. These cases can be handled as
described in Sections 3.2 and 3.3. However, compared with simply letting
Q = p and Q = 0, respectively, it is clearly inefficient and less precise to
compute Q through Eqs. 2 and 3. So, let Q = p for N = 1 and let Q = 0 for
N = 0.

For p = 1, Q = 1 if N ≥ 1. This case requires a computation of ln(0)
in Eq. 3, hence the strategy in Section 3 does not work. Instead, Q should
be set to 1 for this case. Considering the discussion for Case 2 in Section 3,
other cases also need the same handling if computation of (1− p) gives zero
due to rounding errors. Precisely speaking, let Q = 1 if boolean expression
“1 − p = 0” gives true in a computer system.

For p = 0, Q = 0 if N ≥ 1. This case causes zero-division in evaluation
of a termination condition for summation of a power series about p, which is
introduced later (Section 3.2). So, let Q = 0 if boolean expression “p = 0”
gives true in a computer system. Note that the first term of the power series
(Eq. 4) is p itself, so it is sufficient to check whether p is computationally
equivalent to zero, in order to avoid a zero-division error.

3.2 Computation of x from p

For any p in range 0 < p < 1, Eq. 3 can be expanded into a power series as

x = N
∞
∑

n=1

qn(p) (4)

3



where

qn(p) ≡
pn

n
(5)

It is trivial that qn(p) > 0 for any n ≥ 1 and qn(p) decreases as n de-
creases. Consider performing the above summation literally, and terminating
the computation when the next term to add becomes too small to add. In
other words, let’s re-write x as

x = N · Sm(p) + N · Rm+1(p) (6)

where

Sm(p) ≡

m
∑

n=1

qn(p) (7)

Rm(p) ≡

∞
∑

n=m

qn(p) (8)

and compute Sm(p) for the smallest m that satisfies

qm+1(p)

Sm(p)
< ε (9)

For such m, the residual Rm+1(p) is evaluated as

Rm+1(p) <
∞
∑

n=m+1

pn

m + 1
(10)

=
pm+1

m + 1

∞
∑

n=0

pn (11)

=
qm+1(p)

1 − p
(12)

because

qn(p) <
pn

m + 1
(13)

for n > m + 1. Combining Eqs. 9 and 12 gives

Rm+1(p)

Sm(p)
<

ε

1 − p
(14)

4



and the fractional residual is then evaluated as

N · Rm+1(p)

x
=

Rm+1(p)

Sm(p) + Rm+1(p)
(15)

<
ε

1 − p + ε
(16)

Assuming ε � 1, the estimator of the fractional residual in Eq. 16 can be
approximately computed as follows.

ε

1 − p + ε
≈











2ε for p = 0.5
1.1ε for p = 0.1
1.01ε for p = 0.01

(17)

Now it is trivial that the fractional residual becomes more significant for a
larger p. Therefore, direct computation of x as in Eq. 3 works better for such
cases. On the other hand, loss of significant digits in direct computation of
(1 − p) becomes more serious for a smaller p, starting at p ≈ 0.1. In other
words, The above estimate shows that the fractional residual dominates loss
of precision in computation of x for a large p, that direct computation of
(1− p) dominates it for a small p, and that the boundary between those two
scenarios lies around p = 0.1.

3.3 Computation of Q from x

For any x ≥ 0, Eq. 2 can be expanded into a power series as

Q =
∞
∑

n=0

qn(x) (18)

where

qn(x) ≡
x2n+1

(2n + 1)!

(

1 −
x

2n + 2

)

(19)

For a certain value of x, however, computing the above summation in
an iterative manner does not work. For example, the behavior of qn(x) for
x � 1 changes in the middle of the sum, where x ≈ 2n + 1. In fact, for
x ≥ 1 (Q > 0.63), direct computation of Eq. 2 gives the best estimate of Q,
even though it causes loss of significant digits when e−x is subtracted from
1. After all, a resultant Q cannot be expressed any better than the result

5



of direct computation of the subtraction. In other words, loss of significant
digits in the subtraction is unavoidable in principle.

Another case worth noting is x = 0 (Q = 0), where all qn(x) becomes
zero. This case may not seem important because x becomes zero only if
p = 0 or N = 0, both of which are handled as a special case (see Section 3.1
for details). However, this case should be checked in an actual computation
because x may become computationally equivalent to zero for some other
reasons, such as rounding errors and floating-point underflow.

For 0 < x < 1, consider performing the above summation literally, and
terminating the computation when the next term to add becomes too small
to add. In other words, let’s re-write Q as

Q = Sm(x) + Rm+1(x) (20)

where

Sm(x) ≡

m
∑

n=0

qn(x) (21)

Rm(x) ≡

∞
∑

n=m

qn(x) (22)

and compute Sm(x) for the smallest m that satisfies

qm+1(x)

Sm(x)
< ε (23)

For such m, the residual Rm+1(x) is evaluated as

Rm+1(x) <
∞
∑

n=m+1

x2n+1

(2m + 3)!

(

1 −
x

2m + 4

)

(24)

=
x2m+3

(2m + 3)!

(

1 −
x

2m + 4

) ∞
∑

n=0

x2n (25)

=
qm+1(x)

1 − x2
(26)

because

qn(x) <
x2n+1

(2m + 3)!

(

1 −
x

2m + 4

)

(27)

6



for n > m+1 (see Section 5.1 for a proof of the inequality). Combining Eqs.
23 and 26 gives

Rm+1(x)

Sm(x)
<

ε

1 − x2
(28)

and the fractional residual is then evaluated as

Rm+1(x)

Q
<

ε

1 − x2 + ε
(29)

Assuming ε � 1, the estimator of the fractional residual in Eq. 29 can be
approximately computed as follows.

ε

1 − x2 + ε
≈











1.3ε for x = 0.5
1.01ε for x = 0.1
1.0001ε for x = 0.01

(30)

Again, the fractional residual becomes more significant for a larger x. There-
fore, direct computation of Q as in Eq. 2 works better for such cases. On
the other hand, loss of significant digits in subtraction of e−x from 1 be-
comes more serious for a smaller x, starting at x ≈ 0.1 where e−x ≈ 0.9.
In other words, The above estimate shows that the fractional residual domi-
nates loss of precision in computation of Q for a large x, that subtraction of
e−x from 1 dominates it for a small x, and that the boundary between those
two scenarios lies around x = 0.1.

4 Summary

This section summarizes how to compute

Q = 1 − (1 − p)N (31)

= 1 − e−x (32)

where
x ≡ −N ln(1 − p) (33)

in a computer system in which the difference between 1.0 and the smallest
representable value greater than 1.0 is ε.

1. Handle special cases, if any one of the conditions below meets. Other-
wise, go to the next step. Note that cases for N = 1 can be handled
for any p by simply letting Q = p, cases for p = 0 or p = 1 need to be
handled only for N ≥ 2.

7



(a) Set Q = 0 if N = 0.

(b) Set Q = p if N = 1.

(c) Set Q = 1 if N ≥ 2 and p = 1.

(d) Set Q = 0 if N ≥ 2 and p = 0.

2. Compute x.

(a) If p ≥ 0.1, compute −N ln(1− p) in a regular manner and set the
result to x.

(b) Otherwise, compute Sm(p) iteratively until rm+1(p) < ε, where

Sm(p) ≡

m
∑

n=1

qn(p) (34)

qn(p) ≡
pn

n
(35)

rm(p) ≡
qm(p)

Sm−1(p)
(36)

and set x = N · Sm(p).

3. Compute Q.

(a) If x ≥ 0.1, compute 1− e−x in a regular manner and set the result
to Q.

(b) Otherwise, compute Sm(p) iteratively until rm+1(p) < ε, where

Sm(x) ≡

m
∑

n=0

qn(x) (37)

qn(x) ≡
x2n+1

(2n + 1)!

(

1 −
x

2n + 2

)

(38)

rm(x) ≡
qm(p)

Sm−1(p)
(39)

and set Q = Sm(x).

Note that the computing methods with series expansions above (i.e., com-
putation of Sm(p) for x and that of Sm(x) for Q) give a fractional error
(difference between the true value and a computed value divided by the true
value) of an order of ε.

8



5 Useful inequalities

This section lists the inequalities used in this note with their complete proofs.

5.1 Inequality A

For n > m ≥ 0 and any 0 < x < 1, the following inequality holds.

qn(x) <
x2n+1

(2m + 1)!

(

1 −
x

2m + 2

)

(40)

where

qn(x) ≡
x2n+1

(2n + 1)!

(

1 −
x

2n + 2

)

(41)

Proof

For m ≥ 0, define functions

cm(x) ≡
1

(2m + 1)!

(

1 −
x

2m + 2

)

(42)

fm(x) ≡
cm+1(x)

cm(x)
(43)

Then, it is trivial that cm(x) > 0 for any m ≥ 0 and any x that satisfies
0 < x < 1. And,

fm(x) =
(2m + 1)!

(2m + 3)!
·
1 −

x

2m+4

1 −
x

2m+2

(44)

=
1

(2m + 3)(2m + 2)
·
2m + 2

2m + 4
·
2m + 4 − x

2m + 2 − x
(45)

=
1

(2m + 4)(2m + 3)
·
2m + 4 − x

2m + 2 − x
(46)

<
1

(2m + 4)(2m + 3)
·
2m + 4 − 0

2m + 2 − 1
(47)

=
1

(2m + 2)(2m + 3)
(48)

< 1 (49)

9



Therefore,
cm+1(x) < cm(x) (50)

for any m ≥ 0, hence,
cn(x) < cm(x) (51)

for any n > m ≥ 0. Since x2n+1 > 0, it is now trivial that

cn(x)x2n+1 < cm(x)x2n+1 (52)

which is the inequality to prove.
(End of proof)

10


